Expression
|
Curve definition
|
Variables
|
Description
|
Linear transformations
|
|
|
|
Derivative of nth order
|
|
Cartesian |
|
Integral, area
|
|
|
|
Composition operator
|
|
|
|
Even component
|
|
|
|
Odd component
|
|
|
|
Difference operator
|
|
|
|
Backward difference (Nabla operator)
|
|
|
|
Indefinite sum operator (inverse operator of difference)
|
|
|
|
Sturm–Liouville operator
|
Non-linear transformations
|
|
|
|
Inverse function
|
|
|
|
Legendre transformation
|
|
|
|
Left composition
|
|
|
|
Indefinite product
|
|
|
|
Logarithmic derivative
|
|
|
|
Elasticity
|
|
|
|
Schwarzian derivative
|
|
|
|
Total variation
|
|
|
|
Arithmetic mean
|
|
|
|
Geometric mean
|
|
Cartesian |
|
Subtangent
|
|
Parametric Cartesian |
|
|
Polar |
|
|
Polar |
|
Sector area
|
|
Cartesian |
|
Arc length
|
|
Parametric Cartesian |
|
|
Polar |
|
|
Cartesian |
|
Affine arc length
|
|
Parametric Cartesian |
|
|
Parametric Cartesian |
|
|
Cartesian |
|
Curvature
|
|
Parametric Cartesian |
|
|
Polar |
|
|
Parametric Cartesian |
|
|
Cartesian |
|
Affine curvature
|
|
Parametric Cartesian |
|
|
Parametric Cartesian |
|
Torsion of curves
|
|
Parametric Cartesian |
|
Dual curve (tangent coordinates)
|
|
Parametric Cartesian |
|
Parallel curve
|
|
Parametric Cartesian |
|
Evolute
|
|
Intrinsic |
|
|
Parametric Cartesian |
|
Involute
|
|
Parametric Cartesian |
|
Pedal curve with pedal point (0;0)
|
|
Parametric Cartesian |
|
Negative pedal curve with pedal point (0;0)
|
|
Intrinsic |
|
Intrinsic to Cartesian transformation
|
Metric functionals
|
|
|
|
Norm
|
|
|
|
Inner product
|
|
|
|
Fubini–Study metric (inner angle)
|
Distribution functionals
|
|
|
|
Convolution
|
|
|
|
Differential entropy
|
|
|
|
Expected value
|
|
|
|
Variance
|